Secondary Aftershocks and Their Importance for Aftershock Forecasting
نویسندگان
چکیده
The potential locations of aftershocks, which can be large and damaging, are often forecast by calculating where the mainshock increased stress. We find, however, that the mainshock-induced stress field is often rapidly altered by aftershock-induced stresses. We find that the percentage of aftershocks that are secondary aftershocks, or aftershocks triggered by previous aftershocks, increases with time after the mainshock. If we only consider aftershock sequences in which all aftershocks are smaller than the mainshock, the percentage of aftershocks that are secondary also increases with mainshock magnitude. Using the California earthquake catalog and Monte Carlo trials we estimate that on average more than 50% of aftershocks produced 8 or more days after M 5 mainshocks, and more than 50% of all aftershocks produced by M 7 mainshocks that have aftershock sequences lasting at least 15 days, are triggered by previous aftershocks. These results suggest that previous aftershock times and locations may be important predictors for new aftershocks. We find that for four large aftershock sequences in California, an updated forecast method using previous aftershock data (and neglecting mainshock-induced stress changes) can outperform forecasts made by calculating the static Coulomb stress change induced solely by the mainshock.
منابع مشابه
Failure Time Remapping in Compound Aftershock Sequences
Compound aftershock sequences are of special interest because the decay of secondary aftershocks contains information about the mechanisms that generate all earthquakes. If earthquakes nucleate as a result of accelerating slip, growing cracks, or any similar failure process, then the rate of decay of aftershock sequences is a direct result of that failure process, as influenced by local materia...
متن کاملForecasting large aftershocks within one day after the main shock
Forecasting the aftershock probability has been performed by the authorities to mitigate hazards in the disaster area after a main shock. However, despite the fact that most of large aftershocks occur within a day from the main shock, the operational forecasting has been very difficult during this time-period due to incomplete recording of early aftershocks. Here we propose a real-time method f...
متن کاملSub-critical and Super-critical Regimes in Epidemic Models of Earthquake Aftershocks
We present an analytical solution and numerical tests of the epidemic-type aftershock (ETAS) model for aftershocks, which describes foreshocks, aftershocks and mainshocks on the same footing. In this model, each earthquake of magnitude m triggers aftershocks with a rate proportional to 10. The occurrence rate of aftershocks triggered by a single mainshock decreases with the time from the mainsh...
متن کاملAftershock Patterns and Main Shock Faulting
We have compared aftershock patterns following several moderate to large earthquakes with the corresponding distributions of coseismic slip obtained from previous analyses of the recorded strong ground motion and teleseismic waveforms. Well-located aftershock hypocenters are projected onto the main shock fault plane, and their positions are examined relative to the zones of coseismic displaceme...
متن کاملInsights into the Aftershocks and Inter-Seismicity for Some Large Persian Earthquakes
This paper focuses on aftershocks behavior and seismicity along some co-seismic faults for large earthquakes in Iran. The data of aftershocks and seismicity roughly extracted from both the Institute of Geophysics the University of Tehran (IGUT) and International Seismological Center (ISC) catalogs. Apply some essential methods on 43 large earthquakes data; like the depth, magnitude as well as t...
متن کامل